NSB13ANT3G
APPLICATION NOTES
RESPONSE TIME
In most applications, the transient suppressor device is
placed in parallel with the equipment or component to be
protected. In this situation, there is a time delay associated
with the capacitance of the device and an overshoot
condition associated with the inductance of the device and
the inductance of the connection method. The capacitive
effect is of minor importance in the parallel protection
scheme because it only produces a time delay in the
transition from the operating voltage to the clamp voltage as
shown in Figure 3.
The inductive effects in the device are due to actual
turn‐on time (time required for the device to go from zero
current to full current) and lead inductance. This inductive
effect produces an overshoot in the voltage across the
equipment or component being protected as shown in
Figure 4. Minimizing this overshoot is very important in the
application, since the main purpose for adding a transient
suppressor is to clamp voltage spikes. The SMB series have
a very good response time, typically < 1 ns and negligible
inductance. However, external inductive effects could
produce unacceptable overshoot. Proper circuit layout,
minimum lead lengths and placing the suppressor device as
close as possible to the equipment or components to be
protected will minimize this overshoot.
Some input impedance represented by Z in is essential to
prevent overstress of the protection device. This impedance
should be as high as possible, without restricting the circuit
operation.
DUTY CYCLE DERATING
If the duty cycle increases, the peak power must be
reduced as indicated by the curves of Figure 5. Average
power must be derated as the lead or ambient temperature
rises above 25 ° C. The average power derating curve
normally given on data sheets may be normalized and used
for this purpose.
V
V in (TRANSIENT)
V
OVERSHOOT DUE TO
INDUCTIVE EFFECTS
V in (TRANSIENT)
V L
V L
V in
t d
t D = TIME DELAY DUE TO CAPACITIVE EFFECT
Figure 3.
t
Figure 4.
t
1
0.7
0.5
0.3
0.2
PULSE WIDTH
0.1
0.07
0.05
0.03
0.02
10 m s
10 ms
1 ms
100 m s
0.01
0.1 0.2
0.5
1
2 5 10
20
50 100
D, DUTY CYCLE (%)
Figure 5. Typical Derating Factor for Duty Cycle
http://onsemi.com
4
相关PDF资料
NSQA12VAW5T2G TVS QUAD ARRAY LO CAP ESD SOT323
NUP1105LT3G IC BUS PROTECTOR CAN/LIN SOT-23
NUP1301ML3T1G IC DIODE ARRAY LOCAP ESD SOT-23
NUP1301U,115 IC DIODE ARRAY ESD SC-70
NUP2114UCMR6T1G TVS ARRAY ESD 6-TSOP
NUP2201MR6T1 IC TVS DIODE ARRAY HS LINE 6TSOP
NUP2202W1T2G IC DIODE/TVS ARRAY HS SOT-363
NUP2301MW6T1 IC TVS DIODE ARRAY 2LINE SC88
相关代理商/技术参数
NSB13ANT3H 制造商:ON Semiconductor 功能描述:
NSB1706DMW5T1 功能描述:开关晶体管 - 偏压电阻器 100mA 50V BRT NPN RoHS:否 制造商:ON Semiconductor 配置: 晶体管极性:NPN/PNP 典型输入电阻器: 典型电阻器比率: 安装风格:SMD/SMT 封装 / 箱体: 直流集电极/Base Gain hfe Min:200 mA 最大工作频率: 集电极—发射极最大电压 VCEO:50 V 集电极连续电流:150 mA 峰值直流集电极电流: 功率耗散:200 mW 最大工作温度: 封装:Reel
NSB1706DMW5T1/D 制造商:未知厂家 制造商全称:未知厂家 功能描述:Dual Bias Resistor Transistor
NSB1706DMW5T1G 功能描述:开关晶体管 - 偏压电阻器 100mA 50V BRT NPN RoHS:否 制造商:ON Semiconductor 配置: 晶体管极性:NPN/PNP 典型输入电阻器: 典型电阻器比率: 安装风格:SMD/SMT 封装 / 箱体: 直流集电极/Base Gain hfe Min:200 mA 最大工作频率: 集电极—发射极最大电压 VCEO:50 V 集电极连续电流:150 mA 峰值直流集电极电流: 功率耗散:200 mW 最大工作温度: 封装:Reel
NSB1706DMW5T1G_09 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Dual Bias Resistor Transistor
NSB1A-8/4 功能描述:扬声器连接器 STAGE BX 8 IN F/SND 4 OUT MALE/RETURN RoHS:否 制造商:Neutrik 标准:Speakon, HPC 型式:Male 位置/触点数量:2 端接类型: 安装风格:PCB 方向:Vertical 触点电镀: 颜色: 触点材料: 电压额定值: 电流额定值:
NSB1B-8/0 功能描述:扬声器连接器 STAGE BX 8 IN F/SND RoHS:否 制造商:Neutrik 标准:Speakon, HPC 型式:Male 位置/触点数量:2 端接类型: 安装风格:PCB 方向:Vertical 触点电镀: 颜色: 触点材料: 电压额定值: 电流额定值:
NSB1C-8/0 功能描述:扬声器连接器 STAGE BX 8 IN F/SND RoHS:否 制造商:Neutrik 标准:Speakon, HPC 型式:Male 位置/触点数量:2 端接类型: 安装风格:PCB 方向:Vertical 触点电镀: 颜色: 触点材料: 电压额定值: 电流额定值: